Skip to main content
メニュー
Revvity logo
Contact us
JP
Revvity Sites Globally

Select your location.

*e-commerce not available for this region.

australia.webp Australia
austria.webp Austria
belgium.webp Belgium
brazil.webp Brazil *
canada.webp Canada
china.webp China *
denmark.webp Denmark
finland.webp Finland
france.webp France
germany.webp Germany
hong-kong.webp Hong Kong (China) *
india.webp India *
ireland.webp Ireland
italy.webp Italy
japan.webp Japan *
luxembourg.webp Luxembourg
mexico.webp Mexico *
netherlands.webp Netherlands
norway.webp Norway
philippines.webp Philippines *
republic of korea.webp Republic of Korea *
singapore.webp Singapore *
spain.webp Spain
sweden.webp Sweden
switzerland.webp Switzerland
thailand.webp Thailand *
uk.webp United Kingdom
usa.webp United States
Breadcrumb
...
  • ホーム
  • Detecting genetic modification in soybean products
Application Note

Detecting genetic modification in soybean products

img-revvity-illuminator-512x288

Genetically Modified (GM) crops allow for the introduction of new traits, such as resistance to pests, disease, and herbicide. The introduction of these genetic elements tends to confer advantages including crop hardiness or yields, which in turn can benefit farmers. In this application note, we assessed the efficiency of DNA isolation from either organic soybeans or soy powder samples from GM soy. Extracted DNA was subjected to PCR and fragment analysis by gel electrophoresis to identify the genetically-modified EPSPS gene.

We also assessed the degree of carry-over observed in a PCR-based assay when using a stainless-steel probe subjected to only disassembly and thorough rinsing between samples rather than full cleaning and autoclaving. The Omni GLH 850 rotor-stator homogenizer was efficient in extracting DNA from both matrices, with resulting DNA yielding clean PCR products as observed on the gel. Use of the single-use Omni Tip disposable plastic probes resulted in no detection of the resistance gene from organic soy, as expected; however, samples processed using the stainless-steel generator probe resulted in visible PCR fragments from not only the GM soy powder but also the organic soybeans. Our results indicate that disassembly and rinsing of the probe is likely insufficient to prevent cross-contamination between samples for PCR-based assays. As resulting DNA yields were more than sufficient for multiple rounds of PCR, if needed, the Omni GLH 850 rotor-stator homogenizer combined with the single-use plastic disposable probe is the recommended combination for research assays sensitive to low-levels of analyte.

For research use only. Not for use in diagnostic procedures.

To view the full content please answer a few questions

By submitting my personal data, I acknowledge that Revvity Inc. and its affiliates (“Company”) will process my personal data provided above consistent with the Company’s Privacy Policy available here.

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Download Resource

Detecting genetic modification in soybean products

Download Application Note
Revvity Logo

©2025 Revvity - All rights reserved

Revvity is a trademark of Revvity, Inc. All other trademarks are the property of their respective owners.