Skip to main content
メニュー
Revvity logo
Contact us
JP
Revvity Sites Globally

Select your location.

*e-commerce not available for this region.

australia.webp Australia
austria.webp Austria
belgium.webp Belgium
brazil.webp Brazil *
canada.webp Canada
china.webp China *
denmark.webp Denmark
finland.webp Finland
france.webp France
germany.webp Germany
hong-kong.webp Hong Kong (China) *
india.webp India *
ireland.webp Ireland
italy.webp Italy
japan.webp Japan *
luxembourg.webp Luxembourg
mexico.webp Mexico *
netherlands.webp Netherlands
norway.webp Norway
philippines.webp Philippines *
republic of korea.webp Republic of Korea *
singapore.webp Singapore *
spain.webp Spain
sweden.webp Sweden
switzerland.webp Switzerland
thailand.webp Thailand *
uk.webp United Kingdom
usa.webp United States
Breadcrumb
...
  • ホーム
  • Blog
  • Precision Medicine
  • Single-cell RNA and protein sequencing as a robust tool for multisite biomarker detection.
Single-cell RNA sequencing shown to be a robust tool for identifying predictive biomarkers across multiple sites

Blog

Precision Medicine Biomarker Detection NGS BioLegend Cell Analysis

Aug 21st 2024

2 min read

Single-cell RNA and protein sequencing as a robust tool for multisite biomarker detection.

Help us improve your Revvity blog experience!

Feedback

Single-cell analysis has transformed our ability to inspect genomic, transcriptomic, epigenomic, and proteomic profiles of individual cells. When applied to diverse populations, single-cell sequencing (sc-Seq) allows us to decode the intricacies of both cellular homeostasis and the pathology of the harshest diseases, such as cancer. Omics research has greatly expanded our knowledge of cancer development and the tumor microenvironments formed within the body, allowing scientists to find new potential biomarkers and therapeutic targets.

In the last decade, research has made strides in expanding our general understanding of multiple myeloma (MM), however, what causes a subset of patients to experience rapid progression of this disease remains a mystery. An incurable illness, MM forms a robust immune microenvironment by interacting with surrounding bone marrow, which supports tumor growth and drug resistance. However, this microenvironment which contributes to MM’s virulence may also hold the key to understanding rapid progression factors. Amongst many benefits, multi-center clinical trials could help decipher trends within the MM rapid progression population, especially as sc-Seq data collection increases. 

scRNA-Seq multicenter trials possible

sc-Seq is a complex experimental approach that can produce robust single-cell data sets. However, even within one location, the slightest technical variation can hinder the ability to properly dissect results. A recent study by Pilcher et al. aimed to directly address site to site variability through comparative analysis of data from three different centers. The authors found that with robust preparation and specific scRNA-seq technologies, similar transcriptome profiles and cell type distributions can be identified. The ability to observe trends in both single-cell protein and RNA opens the possibility for expanded multicenter trials and offers hope to accelerate treatment discovery.

Pilot trial identifies several rapid progression MM factors

From this framework, the authors conducted a pilot study that identified rapid progression MM patients have enrichment of certain cell populations, including exhausted T cells with impaired effector functions and enrichment of M2 macrophages. Additionally, alterations in specific immune cell signaling pathways were identified that could potentially be therapeutic targets. This could potentially help rapidly progressing patients gain time and launch the development of an MM single-cell immune atlas.

Read the paper to gain deeper insights into their research, or visit our single-cell sequencing page to explore Revvity’s solutions for key steps of your single-cell sequencing journey.

For research use only. Not for use in diagnostic procedures.

References

  1. Pilcher, W., Thomas, B.E., Bhasin, S.S. et al. Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma. npj Genom. Med. 8, 3 (2023). https://doi.org/10.1038/s41525-022-00340-x
Learn more

Help us improve your Revvity blog experience!

Feedback

Share this post:

  • Email
  • Facebook
  • Linkedin
  • Twitter

続き Precision Medicine posts

Small RNAs with big roles: the emerging significance of Y RNAs.
Read
Managing abundant molecules in small RNA sequencing.
Read
PIWI-interacting RNAs, a unique class of small RNAs.
Read

ご質問がございましたら、
お気軽にお問い合わせください。

お問合せ
Revvity Logo

©2025 Revvity - All rights reserved

Revvity is a trademark of Revvity, Inc. All other trademarks are the property of their respective owners.